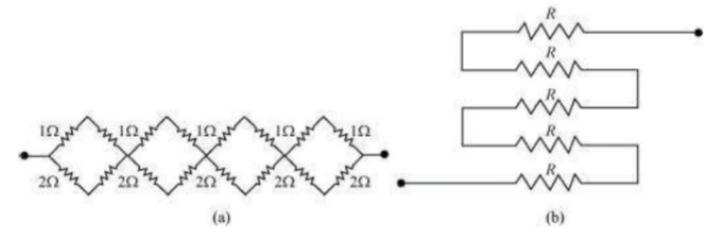
Q. 03

- (a) Given *n* resistors each of resistance *R*, how will you combine them to get the (i) maximum (ii) minimum effective resistance? What is the ratio of the maximum to minimum resistance?
- (b) Given the resistances of 1 Ω , 2 Ω , 3 Ω , how will be combine them to get an equivalent resistance of (i) (11/3) Ω (ii) (11/5) Ω , (iii) 6 Ω , (iv) (6/11) Ω ?
- (c) Determine the equivalent resistance of networks shown in Fig. 3.31.



Answer

(a) Total number of resistors = n

Resistance of each resistor = R

(i) When n resistors are connected in series, effective resistance R_1 is the maximum, given by the product nR.

Hence, maximum resistance of the combination, $R_1 = nR$

(ii) When n resistors are connected in parallel, the effective resistance (R_2) is the

minimum, given by the ratio n.

Hence, minimum resistance of the combination, $R_2 = n$

(iii) The ratio of the maximum to the minimum resistance is,

$$\frac{R_1}{R_2} = \frac{nR}{\frac{R}{n}} = n^2$$

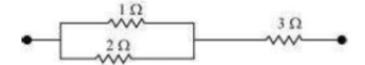
(b) The resistance of the given resistors is,

$$R_1 = 1 \Omega, R_2 = 2 \Omega, R_3 = 3 \Omega 2$$

$$R' = \frac{11}{3} \Omega$$

Equivalent resistance,

Consider the following combination of the resistors.



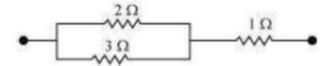
Equivalent resistance of the circuit is given by,

$$R' = \frac{2 \times 1}{2 + 1} + 3 = \frac{2}{3} + 3 = \frac{11}{3} \Omega$$

$$R' = \frac{11}{5} \Omega$$

ii. Equivalent resistance,

Consider the following combination of the resistors.



Equivalent resistance of the circuit is given by,

$$R' = \frac{2 \times 3}{2 + 3} + 1 = \frac{6}{5} + 1 = \frac{11}{5} \Omega$$

(iii) Equivalent resistance, $R' = 6 \Omega$

Consider the series combination of the resistors, as shown in the given circuit.

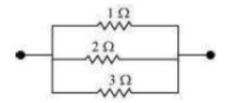
Equivalent resistance of the circuit is given by the sum,

$$R' = 1 + 2 + 3 = 6 \Omega$$

$$R' = \frac{6}{11} \Omega$$

(iv) Equivalent resistance,

Consider the series combination of the resistors, as shown in the given circuit.



Equivalent resistance of the circuit is given by,

$$R' = \frac{1 \times 2 \times 3}{1 \times + 2 \times 3 + 3 \times 1} = \frac{6}{11} \Omega$$

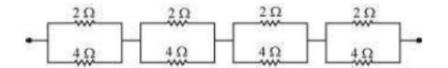
(c) (a) It can be observed from the given circuit that in the first small loop, two resistors of resistance 1 Ω each are connected in series.

Hence, their equivalent resistance = $(1+1) = 2 \Omega$

It can also be observed that two resistors of resistance 2 Ω each are connected in series.

Hence, their equivalent resistance = $(2 + 2) = 4 \Omega$.

Therefore, the circuit can be redrawn as



It can be observed that 2 Ω and 4 Ω resistors are connected in parallel in all the four loops. Hence, equivalent resistance (R') of each loop is given by,

$$R' = \frac{2 \times 4}{2 + 4} = \frac{8}{6} = \frac{4}{3} \Omega$$

The circuit reduces to,

$$\frac{4}{3}\Omega$$
 $\frac{4}{3}\Omega$ $\frac{4}{3}\Omega$ $\frac{4}{3}\Omega$

All the four resistors are connected in series.

Hence, equivalent resistance of the given circuit is $\frac{4}{3} \times 4 = \frac{16}{3} \Omega$

(b) It can be observed from the given circuit that five resistors of resistance *R* each are connected in series.